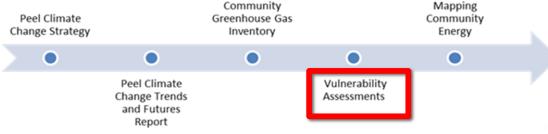


1

Peel Climate Change Partnership

The Partnership: We All Have a Role to Play

➤ In 2009, the Community Climate Change partnership was formed to develop an intergovernmental climate change strategy.



Partnership Deliverables

- In 2011, the partnership developed the Peel Climate Change Strategy.
- Project focused working groups, with representation from across the partnership, were formed to assist with the completion of *Peel Climate Change Strategy* actions noted below.

Polling Question #1

Has your municipality experienced a major flood in the last 15 years?

- a. Yes
- b. No

Shared Experiences

Evacuation Plans do not consider flooding

Critical Infrastructure failure poses potential threat to public

GTA

lowe / GTA

Mississauga resident living in tent since flood

 $\label{lem:condition} \mbox{Ken Hills, 60, is one of hundreds living near Cooksville Creek displaced since last week's storm.}$

Community and municipal service needs

Extreme Rainfall #1 Climate Related Threat for Water Systems

Riverine Flooding

Source: Toronto Region Conservation Authority, 2019

Groundwater Flooding

Source: NERC, Natural Environment Research Council, 2017

Urban Overland Flooding

Source: Toronto.com, 2013

Water Quality

Source: Saleh Sebti, 2013

Sanitary Sewer Backup

Source: Minneapolis Basement Flood Damage Restoration

Erosion

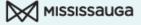
Source: Toronto Region
Conservation Authority, 2017

Major Gaps Identified in Vulnerability Study

- Short Duration High Intensity Storms identified as posing the highest risk
- Multiple causes of flooding –multiple stakeholders
- ➤ Need for Integrated solutions between partners and departments (Planning, Public Works, Transportation, Emergency Preparedness, CVC/TRCA, Peel)
- ➤ No Common Standard for evaluating risk in existing urban areas under climate change
- ➤ No Financial Tools to evaluate mitigation measures (return on investment)

Polling Question #2

Does your municipal stormwater master plan and stormwater asset plan consider the impact of flooding on different municipal services such as emergency management, water and sanitary system?


- a. Yes
- b. No

Stormwater Master Plan

mississauga.ca/stormwater-master-plan

What is Level of Service?

What Level of Risk are we willing to accept?

What Level of Service can we feasibly achieve in older areas?

What will Climate Change bring?

Federal and Provincial Requirements

Federal Infrastructure Funding

Requires climate change risk assessment, ROI for best management practices including economic, social and critical infrastructure impacts

Growth Plan for GGH/ PPS (2019)

Stormwater master planning informed by the relevant watershed/subwatershed plans

Ontario Reg 588/17 3(1) 5

>Asset management address Climate Change vulnerabilities

Defining Levels of Service and Acceptable Level of Risk

MANAGING THE ASSET Operation and Asset **Technical Level** Community Watershed Maintenance Management KPI **Level of Service Level of Service** of Service **Level of Service Level of Service** SWM Ponds are Major work done - % of SWM ponds Add 10 SWM ponds Maintain existing annually inspected such as sediment inspected and require LID for Average for sediment build removal or infill/ Annualized Flood inlet/outlet repair/ - # of properties up or repairs Damages under redevelopment needed replacement experiencing 2050 Climate flooding due to "I do not want to system issue experience flooding"

What Level of Service are taxpayers willing to bear?

What areas do we prioritize?

What options have the greatest return on investment?

2

Risk and Return on Investment Tool

PARTNERS: Risk and Return on Investment Tool

Public Safety Canada Sécurité publique Canada

Input Data Requirements

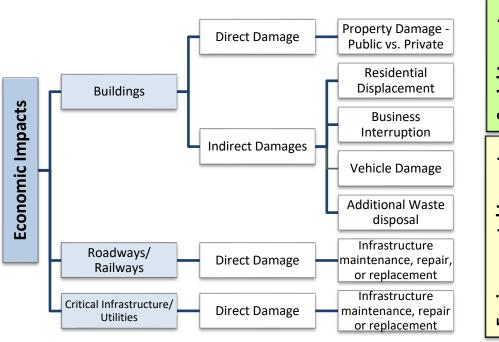
GIS Data Inputs

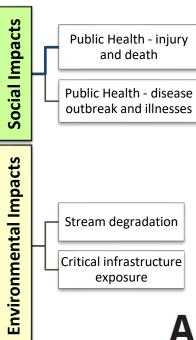
- Digital Elevation Model
- Region of Interest or Boundary
- >Land use
- ➤ Watercourse
- > Floodplain
- **Buildings**
- ➤Infrastructure layers

Model Inputs

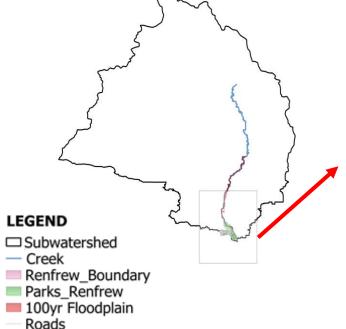
- >Hec-ras outputs
- >SWM model junctions/ catchments
- Sanitary model junctions/catchments
- Hydrology catchments

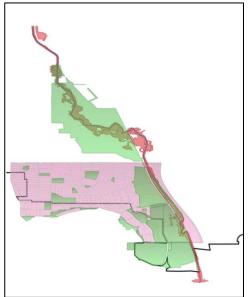
NOTE: Users can use defaults, or their own data. Users can run riverine, sanitary, and/or urban flooding and/or erosion and SWM pond maintenance modules


Built In Source Data


- National Water and Wastewater Benchmarking Infrastructure Cost
- IBI Group Building Depth-Damage Cost Curves, Spatial Index, Life Cycle Cost of Management Options
- Sustainable Technologies Evaluation Program (STEP) Stormwater Management Ponds, and Low Impact Development Life Cycle Costing
- Life Cycle Costing for Natural Assets
- US Federal Emergency Management Agency/ Intact Standard Damage Relationships
- Statistics Canada Demographics
- Province of Ontario Provincial Digital Elevation Model, Surficial Geology
- Social Vulnerability Index Mapping

Conceptual Model


Impacts determined based on event based riverine flooding, urban overland flooding, groundwater flooding, sanitary sewer backup and erosion



Assessment Can be done at different Scales

Watershed-wide Erosion assessment

Community-wide Urban flood risk

Other Assessments:

- Riverine Flooding
- Sanitary Sewer backup
- Groundwater flooding
- Health impacts

Economic Impact (Flood Damages, 100-year storm)

Case Study 1

Flood Type	Flooded Buildings (100- yr)	Total Damages (\$)
Riverine flooding	150	\$21M
Urban flooding	2400	\$400M

Flooded Buildings (Riverine)

Flooded Buildings (Urban Overland)

Historic Flood Complaints

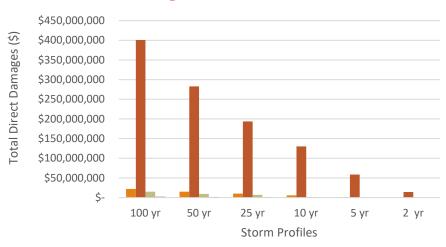
Transportation

--- Railway

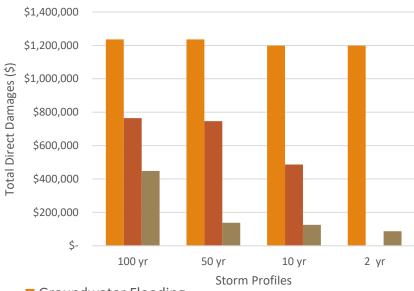
Case Study 2

Flood Type	Flooded Buildings (100- yr)	Total Damages (\$)
Groundwater flooding	20	\$1.2M
Urban flooding	7	\$0.7M

LEGEND

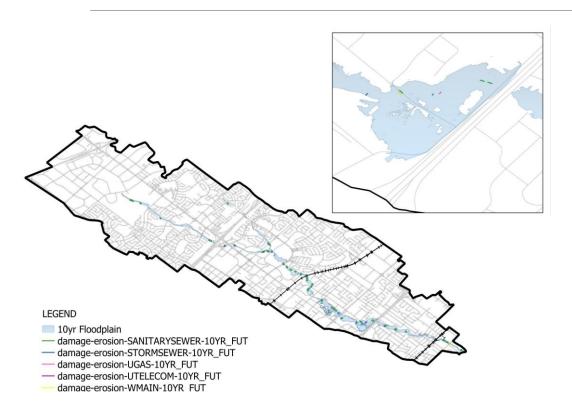

- Alluvial Aquifer
 PCSWMM Model Scope
 damage-groundwater-buildings-100 YEAR.
 damage-urbanoverland-buildings-100 YEAR
 damage-urbanoverland-roads-100 YEAR
 damage-riverine-roads-100 YEAR
 Shaw's Creek

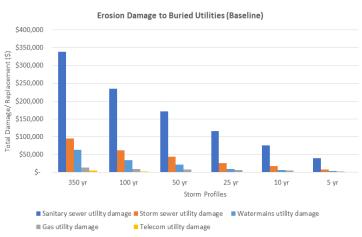
- Railway Roads
- = 100yr Floodplain


Event-based Damage Quantification (Public and Private)

Case Study 1

- Flooded Buildings Riverine
- Flooded Buildings Urban Overland Flooding and Storm Sewer Backup
- Flooded Roads (Riverine & Urban)
- Flooded Railways (Riverine and Urban)

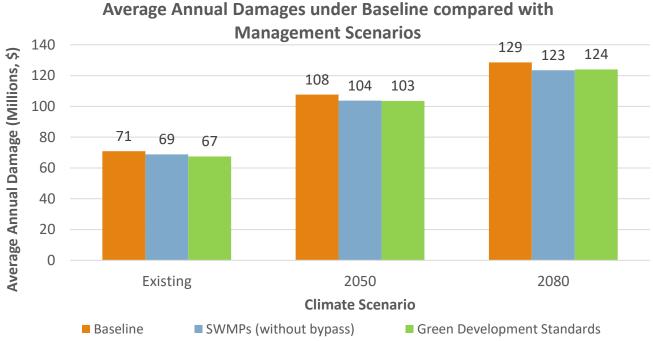

Case Study 2



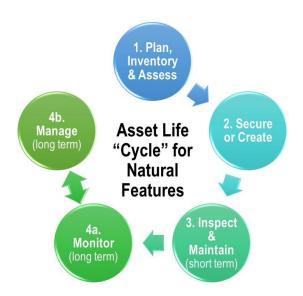
- Groundwater Flooding
- Urban Overland Flooding and Storm Sewer Backup
- Roads

Erosion Damage to Critical Infrastructure

Striking the Right Balance

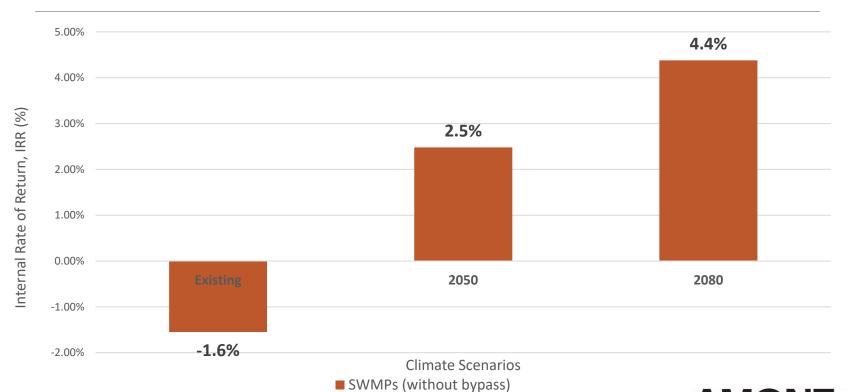


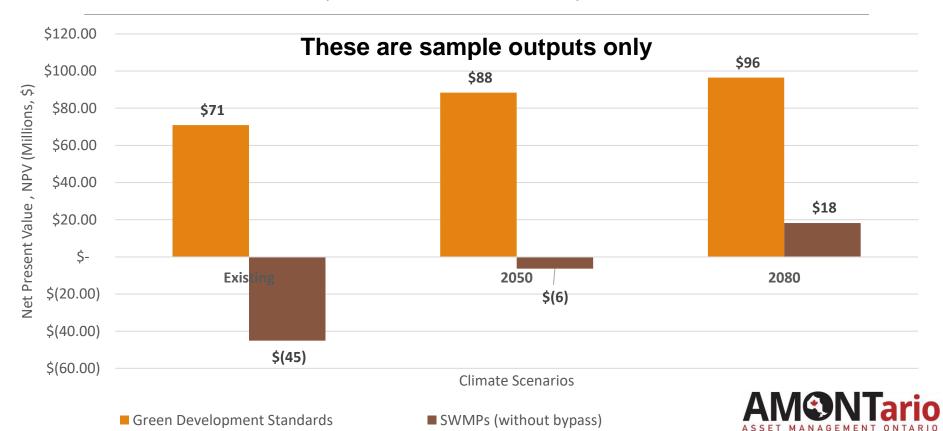
Tool allows Municipalities to Compare Solutions



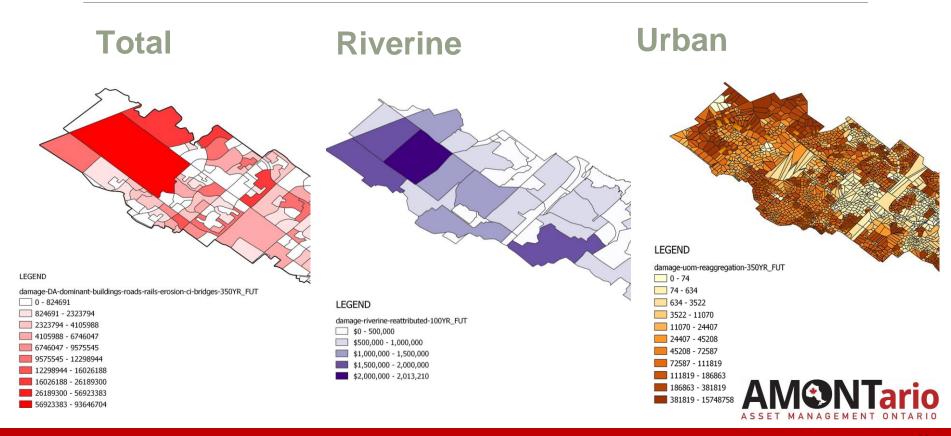
Sample output: comparing various solutions for their return on investment (in terms of damage reduction/avoidance)

Natural Assets Life Cycle Costing Database



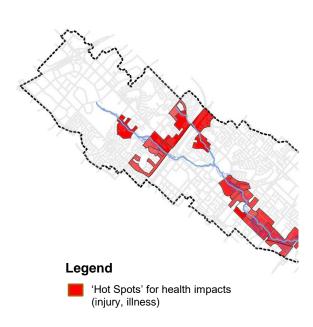


Return on Investment (Internal Rate of Return, IRR)

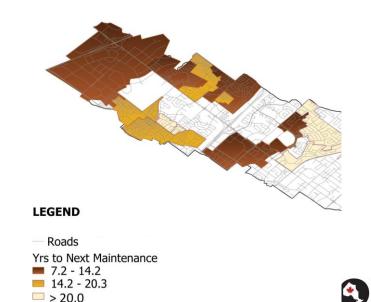


AMONTARIO ASSET MANAGEMENT ONTARIO

Return on Investment (Net Present Value, NPV)

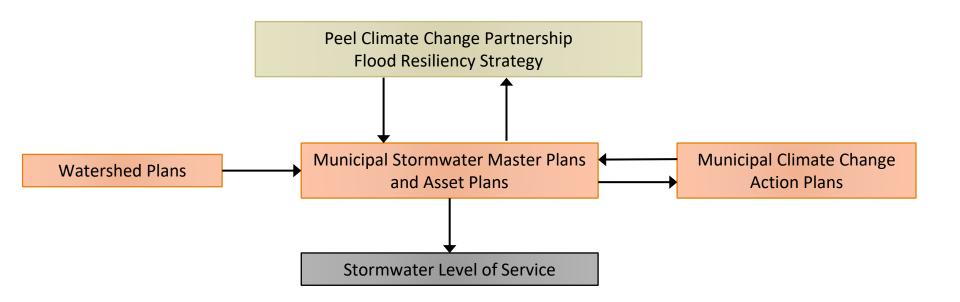


Priority Assets for Infrastructure Upgrades



Prioritizing Action to Address Social Vulnerability and Pollutant Hot Spots

Health



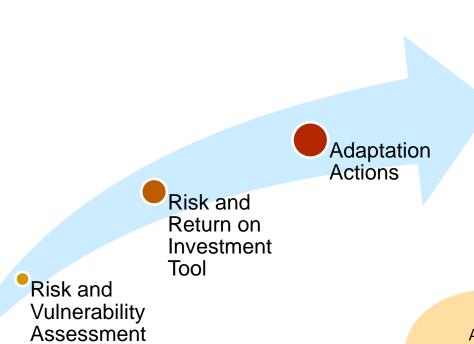
High Maintenance BMPs

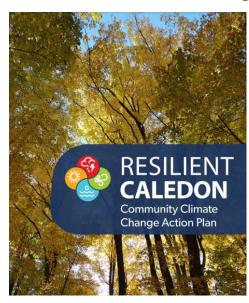
These are sample outputs only


Putting It All Together

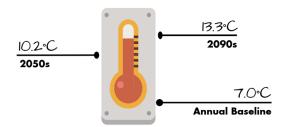
Where in the world is Caledon?

- Most northern of three municipalities in the Region of Peel
- Predominantly rural with a mix of urban areas, villages, and hamlets
- Covers nearly 700 km2
- Population: 71,600 (2017 census) and anticipated to grow by 2031
- Major flood in Bolton (2019)



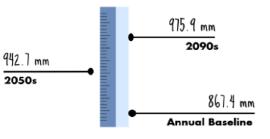

Bolton Flood 2019

Integrating Risk, Asset Management and Climate Change


Asset Management Plan

Stormwater Master Plan update

Official Plan Update


Major Findings

- The climatic threats impacting infrastructure relate mostly to changes in temperature and precipitation
- 3 of the 4 highest ranking impacts were related to Town-owned infrastructure
 Highest ranking impact is stress on stormwater management infrastructure
 - Impacts cause damage and wear on built infrastructure, causing aging faster than expected
 - More frequent and high intensity rainfall events means infrastructure is likely under more stress than anticipated during its design

ANNUAL MEAN TEMPERATURES

Mean, minimum & maximum daily temperatures are projected to significantly increase in every

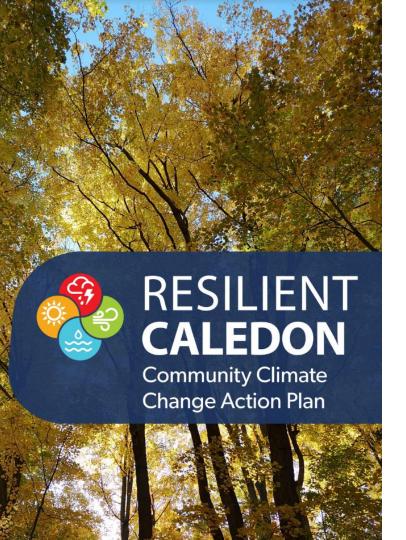
MEAN PRECIPITATION

Winter and Spring are projected to get significantly wetter.

Max 1-day: 37mm

Max 5-day total: 59.2mm

Max 1-day total: 40.6mm Max 5-day total: 63.4mm



Max 1-day total: 44.1mm

Max 5-day total: 70mm

PRECIPITATION EVENTS

Precipitation events in general are projected to become more intense and extreme.

Opportunities

Asset Management

Asset-scale vulnerability assessments

Expanding inventory of stormwater assets

Stormwater Master Plan

Incorporating climate projections into design standards

Tools to help embed climate considerations into capital projects

Official Plan Update

Green Development Standards

Flood mitigation planning policies

"The future depends on what you do today"

Mahatma Gandhi

Closing Remarks

- ➤ CVC and partners are working on releasing the Tool more broadly including training on the Tool in 2022
- If you are interested in the Tool or participating in the Watershed Level of Service Project, please contact Christine Zimmer christine.zimmer@cvc.ca and Amna Tariq amna.tariq@cvc.ca
- >Stay Tuned for further information on training and virtual tour of the Tool

Polling Question #3

Is property flooding due to high groundwater an issue in your municipality?

- a. Yes
- b. No

Polling Question #4

Have you included natural assets within your asset management plan

- a. Yes
- b. No

